PROJECT RECIPE ${ }^{m}$
 Christmas Cheer

Note: Sketch shown above is meant to correspond with the Cutting Guide. It does NOT represent specific designer papers.

INSTRUCTIONS

- Use two sheets of the same designer paper for your base.
- Using the Nutcracker Border Punch, punch two borders from designer paper \#1. Turn the paper 90 degrees and cut at $9-1 / 2^{\prime \prime}$, then turn back and cut in half at $4-1 / 2^{\prime \prime}$ to make pieces C and D.
- Using the 12 -inch Trimmer, finish following Cutting Guides (1) and 2 with designer paper.
- Square pieces E and J can be cut using the 12-inch Trimmer or punched out using the Square Punch. Flip all square pieces over.
- Use the Tape Runner to adhere pieces following the sketch above. Adhere F and G first, followed by C and D , then H and I. Adhere square pieces E and J, alternating patterns as shown.
- Use the Repositionable Tape Runner to adhere border pieces A and B.
- Adhere photos and journal as desired.
- Optional: Apply stickers using Foam Squares to add dimension.

PROJECT RECIPE ${ }^{\text {"' }}$

CUTTING GUIDE: Make the following cuts on designer paper.
Be sure to pay attention to the direction of the paper pattern before cutting.
(1) Designer Paper \#1

A	B	$\begin{aligned} & C \\ & 4-1 / 2^{\prime \prime} \times 9-1 / 2^{\prime \prime} \end{aligned}$		
			$4-1 / 2^{\prime \prime} \times 9-1 / 2^{\prime \prime}$	
		$\begin{gathered} 1-3 / 4^{\prime \prime x} x \\ 1-3 / 4^{\prime \prime} \end{gathered}$	REVERSE	

(2) Designer Paper \#2

INGREDIENTS

\#661906 Christmas Cheer Designer Papers (x4)
\#656818 12-inch Trimmer
\#648420 Tape Runner
\#655443 Repositionable Tape Runner Refill
\#661844 Nutcracker Border Punch
OPTIONAL ADD-ONS
\#661911 Christmas Cheer Stickers
\#661086 Square Punch
\#655669 Black Dual-Tip Pen
\#660820 Foam Squares Variety Pack

PHOTO SIZES
(4) $4^{\prime \prime} \times 6^{\prime \prime}$
(2) $5-1 / 2^{\prime \prime} \times 3-1 / 2^{\prime \prime}$

